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SPHERICALLY LAYERED INCLUSIONS IN A HOMOGENEOUS ELASTIC MEDIUM* 

S.K. KANAUN and L.T. KUDRYAVTSEVA 

A three-dimensional homogeneous and isotropic elastic medium is considered 
that contains an isolated inhomogeneity (inclusion) in the shape of a 
sphere. It is assumed that the elastic moduli of the medium within the 
sphere depend only on the distance r to the centre of the inclusion. It 
is shown that in the case of a constant external field the problem of the 
equilibrium of a medium with an inhomogeneity reduces to a system of 
ordinary differential equations in three scalar functions of the variable 
I‘. An inhomogeneity with a piecewise-constant dependence of the elastic 
moduli on r (a spherically layered inclusion) is examined in detail. In 
this case, an effective calculational algorithm is proposed to construct 
the solution of the problem. The solution of the problem of one inclusion 
is then utilized to determine the effective elastic moduli of a medium 
with a random set of spherically layered inclusions and the estimates of 
the stress concentration at individual inhomogeneities. The method of 
an effective (selfconsistent) field is used to take account of interaction 
between the inclusions. 

The problem of a spherically layered inclusion in a homogeneous 
elastic medium was solved /l-3/ for particufar forms of the constant 
external field. The method proposed below enables us, within the framework 
of a single scheme, to examine both spherically layered inclusions with 
practically any number of layers and inclusions with elastic moduli 
varying continuously along the radius for an arbitrary homogeneous external 
stress (strain) field. 

1. The integral equation of the problem. In an infinite homogeneous medium with 
the elastic modulus tensor cp let there be an isolated inhomogeneity occupying a finite domain 
V whose characteristic function is V(z), where s(s,,x,,x~) is a point of the medium. We shall 
consider the elastic modulus tensor c(x) to be a piecewise-smooth function of the coordinates 
with the domain V. We examine the deformation of the medium e(x) under the effect of self- 
equilibrated forces at infinity and certain mass forces. 

Let Q(X) denote the external field of deformations that would exist in a medium when 
there are no inhomogeneities and the same loading conditions. It is known /4/ that a 
perturbation of the strain tensor e,(s)= a(z)- e,(x) in a medium with an inhomogeneity will 
satisfy the equation 

%z~ (4 + f Kafsrp (5 - 5’) c:ILvp @‘) Qvp (4 &’ = 

-jKa;,,cx- x‘)C~~~~(5’)eOYp(x’)dx’, c*(x)Y-c(x)-CLl 

(1.1) 

The kernel K(x)of the integral operator K in this equation is expressed in terms of the 
second derivatives of Green's function G(z) for the medium c0 

&err(z)= -(V,V1G~lt(s))(creff,p) (I.21 

The function G(x) satisfies the well-known equation (6a" is the Kronecker delta, and s(x) 
is the delta function) 

V,C~~'"V,.G~~(Z)= -6$6(x) (1.3) 

*Pril;l.Hatem.Ifekhan.,50,4,633-643,1986 
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The Fourier transformation k* (k) of the function K(s) (the symbol of the operator K) 
is a homogeneous function of zero degree in k and by virtue of (1.21, (1.3) has the form 

As follows from (l.l), the field E+(I) outside the inclusion is restored uniquely by 

means of its values within the domain V. The equation for the function EI+(z)= ~~(5) V(x) is 

obtained by multiplying both sides of (1.1) by V(X). The solution of such equations for a 

non-degenerate, bounded elastic modulus tensor of the inclusion c(z) exists and is unique for 

a fairly broad class of right sides (see /5/ for details). If the surfaces of discontinuity 

of the piecewise-smooth function cl(z) are closed, do not intersect, and do not contain angular 

points and edges, then the solution of (1.1) will be a bounded piecewise-smooth function that 
decreases as I 5 I+ at infinity. 

Consider an elastic isotropic medium. In this case it is convenient to introduce a tensor 

basis whose elements are collected from the divalent tensor 8aB and the unit vector n, /6/ 
in order to represent the quadrivalent tensors in the problem: 

&e~,='/z (&&i, +&&,J, Ez,~,~ =&&&, (1.5) 
E mhr = &mnwr Ewx,, = wg& 

&tm = % (40pr t hw, + &,qm. + $p~wx) 
E sagha = wgw, 

These six linearly independent tensors, which are symmetric in the first and second pair 

of subscripts, form a closed algebra with respect to multiplication, convolutions over two 

subscripts. We will later denote this operation by a dot 

(Ei.Ej)~Bl~=E~~~..EjvpF.p 

(see the multiplication table of the tensorsEi in /6/, Appendix 4). 

The representation of the tensors cO and c1 in the basis (1.5) has the form 

c, = h,E, + +o&, cl(x) = 1, (I) E, + 2~1 (I) E‘, 

where hO,po are the Lam& coefficients of the medium, 1 (3=& + J", (x) t and P (4 = PO + PI (4 
are the same quantities for the inclusion. The tensor K* (k) in (1.4) is determined in the 

case of an isotropic medium by the relationship 

1 
K*(n)=-(Ed -x&R(n)), 

A0 f Pa k 

Pa XO=h,-t n-(kl W-9 

2. Special representation of the operator K. We consider a special representation 

of the singular integral operator K in (1.11, which will be important later. We introduce the 

spherical coordinate system (r,n), where r = 1 z 1, n = s/l I 1 is a vector on the unit sphere Q,. 

Let j* (.s,n) denote the Mellin transform of the tensor function j(r, n) in the variable I‘. 

The following formulas hold /7/ 

j* (s, n) = 5 F1j (r, n) dr, f (r, n) = & ‘j:& r+j* (s, n) ds (2.1) 
0 T-we 

As follows from the results in /8/, the operator K allows of the following representation 

in finite, piecewise-smooth functions j (r,n): 

T+iao 

W.f)(r, n) = & 5 r-s(K,~f*Kst n)ds, T+- (2.2) 

r-im 

where the operator K, is defined by the relationship 

(K,.j*)(s,n)=- &(3-s)r(s) id!?, (-n .m)-"(l.m)l-OK* . (2.3) 

f* (s, 1)dQ, 
9, 

Here r(s) is the Euler Gamma function, n,m,l are vectors on the unit sphere, and K* (m) 
has the form (1.6). 

We will find the result of the action of the operator K, on elements of the tensor basis 

(1.5). To evaluate the integrals on the right-hand side of (2.3) we use formulas that have 

been obtained by direct integration after having passed to angular coordinates on the unit 

sphere (Res< 1) 
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s (n.m)-6 Es(m) dQ,= ,3 _ $ _ bj I.& -1. 2~ - s (Es(n) + 
G 

El (IL) $- 4E,{n)) + s (2 $ s) E,; (n)]; I = 2n s 

From here and (2.3) it follows that 

Therefore, 

tensors Tj that 

we note that Tj are eigenelements of the operator K, 

K,.El= po(3_:)15__s) [TI-i (I---x,)Tsh (2.4) 

K,.&=+'&T2 

K,.Es=++&Tr-&T& 

K,.&=_+-.??-T., ’ 
s (3 -S) 

K..Es=- 
1 

zp,, (3 - S)(5 - S) f(l--)[TI+(~--xo)Tsl + 

(3 - .q)(i - xo) Tsl 

K,.Ee= p;(2;S) {(l-xd(&T1-~T3)+ 
2 

(3-S)(5-S) [TA (1 -x0) T& 

all six tensors of KS-E, are expressed in terms of three linearly-independent 

have the form 

T, = (E, - SE,) (5 - s) - TS, T, = E, - SE, (2.5) 
T, = E, + 2E1 - s (E, + E, + 4E,) + s (s + 2) & 

i 
K,.Tl= - TI, 

2Po 

The last equations follow from (2.4) 

3. A spherically symmetric 

K,.T,=+ Ta, K,.Ts=+ TI, 

and (2.5). 

inhomogeneity. Let the Lame coefficients h and ~1 of 

the inclusion be functions of the variable r only. We will examine the solution of (1.1) in 

the case when the medium is loaded by a constant external field E,,. By virtue of the linearity 

of the problem, the tensor e,(r,n) is represented in the form 

where the tensor a~ A’.’ 

indices. The equation 

super or subscripts. 

We shall seek its 

coefficients dependent 

E,,~ (r, II) = A$ (r, n) e,?., (3.f) 

can be considered to be symmetric in the upper and lower pairs of 

for A (r, n) follows from (1.1) and has the following form without 

A (rr n) + (K -cl-A) (r, n) = -(K.c,) (r, n) (3.2) 

solution as a linear combination of the tensors El (n) (1.5) with scalar 

only on r. Then the product c,*A can be represented in the form 

(3.3) 

where St(r) are scalar functions of r. We substitute this expression for c,*A into (3.2) 

and apply a Mellin transform to both sides of the relationship obtained. Taking (2.2) into 

account, we obtain 

A* ts, n, + &i* (s)(K.Ei)(s,n)= - (K,q.~l*)(~,~j) (3.4) 

c,*(s)=h~*(s)Ez + %i* (S)El 

It follows from (2.4) that the tensors K,.E, and K,.cl* are linear combinations of three 

tensors Tj (2.5). But then the tensor A* (s, n) should naturally also be sought in the form 
of the same linear combination 

(3.5) 



Here aj*(s) are scalar functions of the Mellin transform parameter s, whose r - represen- 
tation is Uj (r). 

Since the operation D= rdldr in the initial r-space corresponds to multiplication by 
- s in the Mellin transform space, it follows from (2.5) and (3.5) that the expression for 
the tensor A (r,n) has the form 

A (r, n) = (E, + E, (n) L)) (5 -1 D) d, (r) -f- (E, -i_ 

EI (n) 0 ap (r) + [.E, + 2E, + (E, (n) -I- 
.& (n) -t 4E, (n)) D -t EE (n) D (D - 2)l (as (r) - a, (r)) 

(3.6) 

If the functions aj (r) can be selected such that A (r,n) satisfies (3.21, then by virtue 
of the uniqueness, the tensor (3.6) is a solution oftheproblem under consideration. 

W@ will now construct the function aj (r). we substitute the tensor A* (s,n) (3.5) into 
(3.4) and take account of (2.4). Equating coefficients on the right and left sides of the 
relationship obtained for the linearly independent tensors T, and T,, we arrive at the follow- 
ing formulas relating the functions a1 and aQ after some reduction 

s (s + X)(s - 3)(S - 5ffat* @) - (1 - ~0) al* (s)J + 

a%+ (s) = 2s (s -i_ 2) s1* (s) f (s + 2)(s - 1) ss* (s) f 4 (s - 2) se* (s) 
(D** (s) = (s - 3)[2(s + 2) s3* (s) + (s + 2)s,*(s) + 26- 2)&*ts)l 

Here St* (s) is the Mellin transform of the scalar coefficients si (r) in expansion 
(3.3). Substituting (3.6) into (3.3), we obtain the following expressions for the functions 
Si (r) in (3.7) 

S1 = 2p1 I(3 + D) a, + 2a,l, S, = h, (5 f D) Da, +- 
2mD (a3 - ad 

(3.8) 

S, = 2p1D i(i + 0) a, -I- 4a& St = 2p1D (D - 2) (as - cc,\ 

The equality of the coefficients for T, will yield a relationship in which the function 

a2 occurs. However, it will later be more convenient to consider the function 

instead of up. 
We obtain a 

the right by the 

B W = aa 0”) + (5 + 0) a3 (d 

relationship analogous to (3.7) for fi by multiplying both sides of (3.4) on 
tensor & andbytakingaccount of the equalities 

A*E, = (E, $ E,D) fi, c,.A.E, = S,E, + &El (3.9) 

S’I = h, (3 + D) l”i -I- 2~18, Ss = 2p.,D)8 

Using (2.4), we have in the same way as above 

s (s - 3) p* (s) - -+ CD** (s) = +- s (3hl* (s) + 2f.b1* (s)) 

(De* (s) = ss,* (s) + (s - 2) se* (s) 

(3.10) 

Differential equations which the desired functions will satisfy are not difficult to 
obtain from the preceding relationships. To do this, we should go over to the x-representations 
in (3.7) and (3.10) by replacing the Mellin transforms of al, a,,fl and Si by their originals, 
and the parameter (-s) by the differential operator D. For instance, let h,(r) and p1 (r) be 
finite functions with piecewise-continuous second derivatives and dh,ld.r = dp,ldr=O for r-0. 
Then from (3.7) and (3.8) we obtain a system of two ordinary fourth-order differential equations 
for the functions a, and a, and from (3.10) a second-order equation for @ whose right sides 
and coefficients are piecewise-continuous functions. The solution of these equations should 
be bounded everywhere and should satisfy the conditions 

Dai = D2ai = 0, i =1,3;Dfi=Oforr=O (3.11) 

aIt a,, B -0 as.rdw 

The first group of these conditions is satisfied of the continuity of the function A (r,n) 
for r=O and the second group because A (r,n) tends to zero at infinity. 

4. A spherically layered inhomogeneity. Let n,(r) and pI (r) be finite piecewise- 
constant functions with discontinuities at the points r=ai,i=l, 2 ,..., N; O<a,<a,< 
. . . < UN. In this case the inclusion consists of a kernel and the (h'-I)-thspherical layer 
within which the elastic moduli are constant. Going over from the relationships (3.7) and 
(3.10) to differential equations for the functions a,,a, and $ we obtain that these equations 
take the following form in the domains of constant h1 and p1 
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D(D-2)(D+3)fD-~5)~j=O~f=1~3~D(D+3)~~0 (4.1) 

Writing the general solution of these equations, we obtain that the form of the functions 

al, aa and $ is determined in the intervals a*-,<r< ai, i = 1.2, . . .,N i 1; ao= 0, aN+l= WJ, 

by the relationships 

a1 (r) - Y$*” $ Y.f+ + Y$-3 + Yf)r-~ (4.2) 

as(r) = Yf’ + Y$2 + Y!/‘r-3 + Yf)r-6, p (r) z Yf’ + Y$-s 

where Yj”’ are arbitrary constants. Therefore, within each layer the solution of the problem 
is determined apart from ten constants. 

We will now investigate the discontinuities of the derivatives of the functions a,,u3 and 

B on the boundaries of the layers. The absence of singular components of the tensors s (r, n) 
and A (r,n) follows from the continuity of the elastic displacement vector in the whole space. 
From this and from (3.6) for A (rfn) it is seen that the function g should be continuous 
while a, and a3 are continuous together with the first derivatives. 

Furthermore, let pl(r) be a piecewise-constant function with discontinuities at the points 
r = a, (i = 1, 2, . , ., N) that equal zero for r> a~. Its Mellin transform pl*(s) (2.1) has the 
form N 

pi*(S)=-+x[p]iQ: 
i=1 

(4.3) 

where the quantity [cp]i for any piecewise-continuous function cp(r)is determined by the relation- 
ship 

By using integration by parts, the equalities 

(~l~~)*~S) = - ii1 tihBli ai’ -s (kP)*(s) 

(W”aj)*(s)= - & ([P&jli - s [plajli ai’ + sp (Flaj)*(s) 

VG 

can be obtained from (2.1) for the continuous function @ and the functions Uj that are con- 
tinuous together with the first derivatives. 

Taking account of (4.3) and (4.4),thefunction Cbl*(s) in (3.7) is representable in the 
form 

G*(s) = zi$r $(a -I- 2)(@- 8s + Q)Ipid - 4(s + ~I[PI~s]~ - 

(St - 3~ + 6)[p&l]i - 4 (S - 2)[P&Q]iI ai’ f s (s + Z)(S - 3)(s - 5)(~1al)*(s) 

The equation 

(4.5) 

s (s + 2)(s - 3)(s - 5)(~3*(~) = - i$l @Wl]i-- [P (6 + D) al]i + (4.6) 

s[~(D’+~D--)~~]~-[~(DS~~D~-D-~O)~~]~)U, 

holds for a function a,(r) of the form (4.2). 
Substituting (4.5) into (3.8) and taking account of (4.6), we obtain 

~~l~~~~[~~]i~~z~[(6iD)~l]~C~([~(DP-i6~~~)~~]~~ 
[PI (7~ - 3fkr;1+ 4as + 4DR)]i) - [p (03 + 6P - D - y 

30) adi + 2 [PI &x3 - 4fis-- Qal-t3h)]iIa?= - 2i~l(2+~)[~]iai 

Equating factors for the linearly independent functions ai' on the left and right sides 
of this relationship, we arrive at N equalities, each of which connects two polynomials. 
The coefficients of identical powers of s in these polynomials should be equal. Hence, after 
algebraic reduction we obtain the following system of conditions on the jumps of the function 

al (r) and its derivatives at the points r = aion the layer boundaries 

1~~1~ = 0, iDa,lr = 0 (4.7) 

1pB*a,1t = -2 [pl* - 3 Ip (2 + D) all* - 4 rp (1 + D) %li 

[pD3aJt - 16 [pli + Ip (48 + 250) a,li + 16 Ip (2 + D ) a& 
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Analogousconditionscan be obtained for the jump of the functions a, and p and their 
derivatives by the same means from (3.10) and the second relationship in (3.7) 

I(h + 2~) D’a,li = 16 Ipli + 24 1~ (2 + D) UII~ +. 32 [~cc,I~+ 
[(25h -C 42~) Da& 

[PI, = 0, I(% + 2~) Dali = - 13X + 2~1, - 1(3h + 2~) f$ 

We note that part of the conditions (4.7) and (4.8) can be obtained by utilizing a general 
expression fox the jump in the strain tensor on the boundary of two elastic media /9/ 

[e]i=-K~+t(n).[c]i*e(ai-O) (4.9) 

The tensor Ki* (12) is defined by relation (1.6) in which the parameters i, and pto should 
be replaced by hi+13 pi+l. Substituting E =(E, f A)+eo here, where A has the form (3.6), 
expressions can be obtained for the jumps in the functions ~,,a,, their first two derivatives 
and the function @ that agree with (4.7) and (4.8). Eqs.(4.7) and (4.8) for the jumps in the 
third derivatives of a,, a3 and the first derivative of @ do not follow from (4.9) and are 
specific for the problem under consideration. 

All the constants Yj@) and in (4.2) for the functions a,,cc, and fi can be found from the 
relationships (4.71, (4.8) and their boundary conditions at .zero and infinity. In the special 
case of a homogeneous inclusion (N = 1) , the equalities YFj(l) = 0 (i = 3, 4, 7, 8, to), I’+(‘) = O(i = 
1,2,5,6,9) follow from (3.11). The remaining ten constants in (4.2) are determined from 
conditions (4.7) and (4.8) and have the form 

Substituting these values of YIcL) into (4.2) and the result into (3.61, we arrive at the 
well-known solution /lo/. 

We will now construct the algorithm to calculate the constants Yj"' in the general case. 

5. An algorithm for the numerical solution of the problem. We introduce the 

Nt-l ten-dimensional vectors Y(*) whose components are the constants Yii) governing the 
solution (4.2) in the i-th interval (in the i-th layer) and the N + 1 vectors Xc') (r) with 
the components (cLI-r <r < Ui) 

x:"(r)_=al(r), Xi"(f)- Dar(r), X$'(r)= L;*%(r) (3.1) 

X;'(r)= D%Lrr 

X~'(r)=:~(~(r), X:'(r)= L&(r), X?'(r)= L%(r) 

Xy'(~)-- D%,(r) 

.\i" (r) := p (r), .Y$ (rj ; 143 (r) 

It follows from (4.2) that the vectors Yci) and X(')(r) are connected by the relationships 

P(r)= ff (r) I”“, Yci) == K* (r) X"'(r); (3.2) 

B=hi@!&hl@ha 

1 P2 r-a r+ 
0 2r? _ 3r-3 _ 5r-5 

ha= 0 4p 9r-S 25+ t h~=ii~ :&I 

0 8rz - 27F3 - 125re6 

Therefore, the vector Yci) and, therefore, the solution (4.2) within the i-th interval, 
is uniquely defined by the value of the vector X fit (r) at any point r (a;-, < r < at). If the value 
of the vector X@f (r) is known at the point r = CQ_~ 50 (at the left end of the i-th interval), 
its value at the right end, for r-ui -0 is determined by virtue of (5.2) by the formula 

X'"' (ai)= R"'X'"'(ai_,), R(i) = H(nJP (Ui-,) (5.3) 
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where we call R(Q the transfer matrix. 
It follows from relationships (4.7) and (4.8) that the vectors ?(ti) and Xciin at the 

point ai on the boundary of the i-th and (i + I)-th intervals are connected by the relationship 

XV+0 (ai~ = F(i) + r(+)X(O(a,) (5.4) 

It is easy to restore the form of the transition matrix r(i) and the transition vector 
Fc") from (4.7) and (4.8). 

suppose the vector of the solution in the first interval Xu)(a,) is known. Then the 
vectors X('+~)(U~) governing the solution in the (i + I)-th interval, is expressed, by virtue 
of (5.3) and (5.41, in terms of the vector Xf*)(a,) 

x@+l) (&) = g’” + Gt’)X(‘) (al) 

i-l j+l 

ii 
0) = j$l), gf”) = pi) + 2 ( n Q@)) E’(j), i --_ 2,3, . . . , N 

j=r b=i 

G(i) = fJ ~(0, Qtr;) = rtk)Rt’:) 

CA 

Here R(') is the unit matrix, and the transfer matrices H(') (k = 2,3,. . .,M) are defined 
in (5.31. 

We will utilize the boundary conditions to construct the vector X(n(a,). St follows 
from the boundedness of the solution at r=O that expressions (4.2) for the functions ulrag 
and p do not contain negative powers of r in the first interval, i.e., l'k(l) = O(k = 3,4,7,8,10). 
Then a relation exists between the components of the vector X(l) which can be represented in 
the form 

X(l) -L &fp , p = p# (5.6) 

Here Z("' are column-vectors with components Xj”’ (j = 
M (10 x 5) and P,(5 x 10) have the form 

irnlto 10 
___i___l_.-- 

melo lo 
_-L-L__ 

= 0 lrn.ll 0 ) 
-__&__‘_ 
0 lm.[O -__-- 

I 0 0 In, I 
1 0 

= o 1 , m2 ii u 

Px= 

II 0 = 
0 

1, 2, 5,6, 9) and the matrices 

~,rzl~ 0 [ 0 10 10 
__ I-__ i__&_,__ 

: 1 0 1 0 [ml: 0 i 0 1 _--,___f___~___;___ 
O~O~OiO~rn 

It follows from the fact that the functions a,,a, and fi approach zero at infinity that 
their expressions (4.2) in the (N + l)-th interval (in the medium) contain only negative 

powers of r, i.e., Yy”’ = O(j = 1,2,5,6,9). It can hence be shown that a relationship exists 
between the components of the vector X(x+$) which can be represented in the form 

w<N+~)._Lz(~+~, - @)__p X a fi) (57) 

Here W(<) is a vector with the components Xk ci) (k = 3,4,7,8, 10) and the matrices L (5 X 5) 
and P,(5 x 10) have the form 

In order to find the components of the vector %(I) we substitute the expression for 
X(N") (C2.V) from (5.5) into (5.7) and take account of (5.6). We consequently arrive at the 
linear equation 

BZ@ = f; B = (Pe - LPJGWW, f = (LP, - P,) g’“’ (5.8) 

(the matrix G(N) and the vector g!V) are defined by the relationship (5.5)). Solving this 
equation, we find the vectors Xci+*) (ai) (i = 1, 2,..., N) from relationships (5.5) and (5.6), 
and then the vectors of the constants YCib which determine the solution within all the layers, 
from (5.21. 

The algorithm described was the basis for a computer solution of the problem. An an 
illustration of the calculation, we examine an inclusion of unit radius consisting of ?J 
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spherical layers of thickness 1 !:I'. Younq's modulus E(') within the i-th layer is given by 
the formula 

EC') =: E (a,), i 1, 2, ., .V i- I 

E(r)=&(l ;-.hoxp(&)] for r<l, E(r)=zE, for r>l (2.9) 

where ai is the external radius of the i-th layer. Poisson's ratio for the medium and all 
the layers was taken to be 0.4. The external loading was uniaxial tension along the axis -lg. 
The stress distribution es5 along an axis orthogonal to z3 with origin at the centre of the 
inclusion is shown in Figs.1 and 2 for .V=60. The computation was performed for 6= -I;&:-: 0, 
10-1,1,10 (compliant inclusions, Fig-l), 6-100 and the same values of A (rigid inclusions, 
Fig.2). 

As ‘v-03, Young's modulus within the inclusion evidently tends to the continuous dis- 
tribution (5.9). To verify the possibilities of the algorithm the computation was carried out 
for increasing values of N until a stable stress distribution pattern was obtained. It turned 
out that for N>40 the distribution is practically invariant as N increases. 

6. Effective elastic moduli of a medium with spherically layered inclusions. 
In a homogeneous elastic medium (matrix) let a random set of identical spherically-layered 
inclusions be distributed spatially, uniformly, and isotropically. We consider the problem 
of calculating the effective elastic moduli of such a composite material and of estimating 
the mean stress concentration at the individual inclusions. We use the effective (self- 

consistent) field method /ll, 12/. The main assumption of the method is that each inclusion 
inthecaposite material will behave as though isolated in a homogeneous medium (matrix) 
subjected to dn effective external strain field E* (the stress is u* = co.&*). The field e, 

is made up of the external field E,, and the field induced by the surrounding inhomogeneities. 
This assumption enables a selfconsistent equation to be obtained to determine E*, whose 
solution has the form /12/ 

E * = A.E~, A-' = E, - n, (q,.K, - E,).P 

p = c;’ . s cl (4. (El + A (2)) dx, Ko=& K*(n)&,,, 
Y s 

0, 

Here n, is the numerical concentration of the inclusions; the integral P is evaluated 
over the volume of the inclusions; and the tensors A (x) and K* (n) have the form (3.6) and 
(1.6), respectively. 

Fig.1 Fig.2 

In the case of isotropic media and inclusions, the expression for I! takes the form 

.4 = d,E, + d, (E, - + E2) 

Here ko is the matrix bulk modulus, and the coefficients C,Q, qn are connected with the 
constants Y,C’) in (4.2) by the relationships 

(6.1) 

*++g (1 + 3Yi"' + 2Y:L))(Q _&) + 4% (3Yy' -+. 2Yt')(ai5 - at-l) 
&=I 
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(k@) is the bulk modulus of the i-th layer). 
Within the framework of the effective-field method, the deformations in the neighbourhood 

of an arbitrary inclusion are calculated by means of the formula E(Z) = (E, + A (z)).e,, and 
the stresses by Hooke's law. 

It follows from the results /12/ that the tensor of the composite's effective elastic 
moduli c* in the case under consideration has the form (the coefficients ql, q2 are defined 
by the relationship (6.1)) 

c,=co~(&- IZOP.A)-~= k,Et + 2p,(E1- ‘/SE*) 

Curves of the effective shear modulus p,, of the composite material as a function of the 
volume concentration p ='/flr~&~J of the inclusions, whose properties are described at the end 
of Sect.5 are presented on the right in Figs.1 and 2. 
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